B.E. / B.Tech Degree Examination, May/June 2013 Fifth Semester

Electronics and Communication Engineering

EC 2305/EC 55 - TRANSMISSION LINES AND WAVEGUIDES

Time: Three Hours Maximum: 100 Marks

Smith Chart can be provided.

Answer ALL Questions

Part A – $(10 \times 2 = 20 \text{ Marks})$

- 1. A constant-K T-section high pass filter has a cutoff frequency of 10 KHz. The design impedance is 600 ohms. Determine the value of L.
- 2. Define propagation constant of a transmission line.
- 3. What is characteristic impedance?
- 4. Find the reflection coefficient of a 50 ohm transmission line when it is terminated by a load impedance of 60 + j40 ohm.
- 5. Define SWR.
- 6. Design a quarter wave transformer to match a load of 200 ohm to a source resistance 500 ohm. The operating frequency is 200 MHz.
- 7. What is degenerate mode in rectangular waveguide?
- 8. State the chracteristics of TEM waves.
- 9. Write Bessel's function of first kind of order zero.
- 10. Mention the applications of cavity resonantors.

Part B - $(5 \times 16 = 80 \text{ Marks})$

- 11. a) i) Derive the expression for characteritic impedance of symmetrical T and Π section networks.
 - ii) Bring out the relation between Decibel and Neper.

(OR)

- b) Obtain the design equations for m-derived
 - i) Bandpass
 - ii) Band elimination filters
- 12. a) i) Derive the expressions for voltage and current along a parallel wire transmission line and obtain its solution.

ii) A cable has the following parameters: $R=48.75 \text{ ohm/km}, \ L=1.09 \text{ mH/km}, G=38.75 \ \mu\text{-mho/km},$ $C=0.059 \ \mu\text{F/km}. \ \text{Determine the characteristic impedance,}$ propagation constant and wavelength for a source of f=1600 Hz and $E_S=1V.$

(OR)

- b) i) Explain in detail the waveform distortion and also derive the condition for distortionless line.
 - ii) Explain the concept of reflection on a line not terminated in its characteristic impedance (\mathbf{Z}_0) .
- 13. a) Design a single stub matching network (use Smith chart) for a transmission line functioning at 500 MHz terimated with a load impedance = $Z_L = 300 + j250 \ \Omega$ and with a characteristic impedance $Z_0 = 100$ ohms. Use short circuited shunt stubs. Determine the VSWR before and after connecting the stub.

(OR)

- b) The input impedance of a $\lambda/8$ long, 50 Ω transmission line are: $Z_1 = 25 + j \ 100 \ \Omega$, $Z_2 = 10 j \ 50 \ \Omega$, $Z_3 = 100 + j \ 0 \ \Omega$ and $Z_4 = 0 + j \ 50 \ \Omega$, when various load impedances are connected at the order end. In each case, determine the load impedance and the reflection coefficient at the input and load ends.
- 14. a) Derive the expression for the field strengths for TE wave between a pair of parallel perfectly conducting planes of infinite extent in the Y and Z directions. The plates are separated in X direction by 'a' meter.

(OR)

- b) i) Discuss the characteristics of TE and TM waves and also derive cut-off frequency and phase velocity from the propagation constant.
 - ii) A pair of parallel perfectly conducting plates is separately by 7 cm in air and carries a signal with frequency of 6 GHz in TE_1 mode. Find (1) Cut-off frequency, (2) Phase constant, (3) Attenuation constant and phase constant for $f = 0.8 f_c$, (4) cut-off wavelength.

15. a) Derive the expression for the field components of TE and TM waves in a circular waveguide.

(OR) -

- b) i) A rectangular cavity resonator excited by TE_{101} mode at 20 GHz has the dimensions a=2 cm, b=1 cm. Calculate the length of the cavity.
 - ii) With neat diagrams, explain the concept of excitation of modes.