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Abstract— In this paper, we have proposed an effective brain 

tumour segmentation technique based on modified Gradient 

vector flow field model. This method is automatic and does not 

require human interaction. This proposed method involves 2 

stages, preprocessing and segmentation. During preprocessing, 

the non-brain regions are removed using morphological 

operators and during segmentation process, the tumour is 

segmented using modified GVF model. Segmentation results 

show that the proposed method is robust to noise. The proposed 

method uses T2 weighted images. The proposed method 

produced appreciative results. 
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I. INTRODUCTION 

     Brain is one of the vital organ of our body. Due to its 

complexity, it is difficult to distinguish its various components 

and analyze it. Even though there are several imaging 

techniques, Magnetic resonance imaging is the commonly 

used technique for analyzing brain. MRI is a non-invasive 

technique that can produce very detailed contrast information 

between the soft tissues. MRI of the brain is an invaluable tool 

for the doctors in diagnosing various brain diseases and in 

tumour detection. The MRI of the brain can be divided into 3 

regions namely Grey matter (GM), White matter (WM), 

Cerebrospinal fluid (CSF). 

     The primary goal of MRI brain image segmentation is to 

partition the given brain image in to anatomical structures 

representing Grey matter, White matter , cerebrospinal fluid, 

skull, scalp and later to detect abnormalities in these tissues. 

Even though greater number of segmentation methods is 

available in the literature to segment images according to 

various criteria such as grey level, texture. Precise 

segmentation and classification of abnormalities are still a 

challenging and complicated task because of inherent noise, 

partial volume effect, different shapes, locations and image 

intensities of different types of tumour. 

     Supervised segmentation methods exhibit the problem of 

repeatability due to inter-observer variance introduced over 

multiple trials of training. Further, supervised segmentation 

methods are time consuming and require domain experts. So, 

these limitations suggest the need for an automatic method for 

segmentation. 

     In this paper, a simple automatic segmentation method is 

presented which can separate the brain tumour from normal 

tissues. An initial preprocessing is done based on 

morphological operators and thresholding technique that we 

have proposed in our previous research papers [1, 2]. Then, 

the modified gradient vector flow field model and region 

based image segmentation techniques are used for refining the 

result to obtain the final tumour segmentation. 

The rest of this paper is organized as follows: section 2 

presents the overview of the proposed method. Section 3 gives 

the concept of GVF, section 4 explains new region growing 

algorithm based on modified GVF field model. Section 5 

presents the detailed experimental results. Lastly, section 6 

concludes the paper. 

 

II. OVERVIEW OF PROPOSED METHOD 

The proposed method is composed of 2 major stages as 

shown in figure 1. In stage1, the input image is preprocessed, 

i.e., skull is removed using mathematical morphological 

operators as shown in figure 2. The skull stripped image is 

further smoothened using 2D Gaussian filter. The smoothened 

image is shown in figure 3. 

 
 

Fig. 1. Proposed Method 
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A two-dimensional Gaussian function is 

 
 

    Here the coefficient A is the amplitude, xo, yo is the centre 

and σx, σy are the x and y spread parameter. Better image 

smoothing is implied through larger σ.  

   In Stage2, an external force field is created around the 

abnormal region using GVF field model. The force vectors 

from 8-neighbouhood for each pixel is valued. The pixel 

having the highest score is considered as seed pixel. Using the 

seed pixel, a region is grown using region growing algorithm 

and later the area of tumour is calculated. 
 

  

 Fig. 2 (a) Input Image (b) Skull Stripped Image 

 

 
 

Fig. 3 (a) Smoothened Image 

 

III. GRADIENT VECTOR FLOW MODEL 

   Gradient vector flow (GVF) fields are dense vector 

fields, generated by diffusing the gradient vectors of a gray 

level or binary edge map, derived from an image [4, 8]. The 

gradient vector flow field is defined to be vector field. (as 

shown in figure 4. 

 V(x, y) = [u(x, y), v(x, y)]   ( 2) 

 

Fig.4. Two-component vector definition for GVF field model 

 The diffusion process grants to the GVF an increased 

capture range. Thus, an initial feature point can be guided to a 

desired boundary even when it is initialized away from the 

boundary. 

     A GVF model as a force field of vectors [5] and they 

minimized the following energy function to derive the GVF 

field. 

 
 E= ∫∫ µ |V|²+|f|²|V-f|²dxdy   (3) 

Where, |V|² = (u²x+ u²y+ v²x+v²y).  

The parameter ‗µ‘ is a regularization parameter governing the 

trade off between the first and the second term in the 

integrand. This parameter should be set according to the 

amount of noise present in the image 
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are defined in a bounded domain R with  as its 

boundary.GVF is defined as the vector function v(x) in the 

sobolev space 𝑊2
2(Ω)[6] that minimize the following function 

 𝜇 ∇𝑣 2 +
Ω
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     The above equation (5) can be written in simple form as, 
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     From calculus of variations [7], J is stationary if and only if 

its first variation vanishes i.e., 

J = 0      (6) 
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the boundary . After rearranging the above equation, we 

get, 
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Since variations of 𝜕𝑣𝑖  , i=1,2,3,…..,n are independent of each 

other, it follows that all the coefficients of 𝛿𝑣𝑖 in the integrals 

must each vanish identically in , giving n scalar Euler 

equation. 

 
𝜕𝐹

𝜕𝑣𝑖
−  

𝜕

𝜕𝑥 𝑗
 
𝜕𝐹

𝜕𝑣𝑗
𝑖 

𝑛
𝑗=1 = 0         (7) 

and n boundary conditions  
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     Where, I =1, 2, ….., n. Substituting the definition of F in 

equation (5) and after some algebra, we obtain the Euler 

equations and boundary conditions for GVF as follows. 
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𝜕𝑣 𝑖

𝜕𝑥 𝑗
𝑛
𝑗=1 𝜂𝑖 = 0 on   (10) 

where i=1,2, …. , n . equations (8) and (9) can be written in a 

simple form using a vector notation as, 

µ²v-(v-f)| f|
2
 = 0  (11) 

The above equation (10) can be written as  

µ²u-(u-fx) (fx² + fy²) = 0  (12)   

µ²v-(v-fy) (fx² + fy²) = 0  (13)  

where ² is the laplacian operator. In homogenous region       

[I(x, y) is a constant], the second term in each equation is zero 

because the gradient of f(x, y) is zero. Therefore within such 

region, ‗u‘ and ‗v‘ are determined by the laplacian equation. 

Equations 11 and 12 can be solved by treating ‗u‘ and ‗v‘ as 

function of time stated by Chenyang Xu and J.L Prince, [4] as, 

ut(x,y,t) = µ²u(x,y,t)-[u(x,y,t)- fx(x, y)].[fx(x, y)²+fy(x, y)²] 

     (14) 

vt(x,y,t) = µ²v(x,y,t)-[v(x,y,t)- fy(x, y)].[fy(x, y)²+fy(x, y)²] 

     (15) 

The equations 14 and 15 can be rewritten as , 

ut(x,y,t) = µ²u(x,y,t)- b(x,y)u(x,y,t)+ c
1
(x,y)]  (16) 

vt(x,y,t) = µ²v(x,y,t)- b(x,y)v(x,y,t)+ c²(x,y)] (17) 

Where, b(x,y)= fx(x,y)²+fy(x,y)²
 

 c
1
(x,y)= b(x,y) fx(x,y) 

 
c²(x,y)= b(x,y) fy(x,y). 

To step up the iterative solution, let the indices be i, j and 

‗n‘ correspond to x, y and ‗t‘ respectively. Spacing between 

pixels can be x and y and the time step for each iteration be 

t. Then the required partial derivatives can be approximated 

as,  ut=1/t(ui,j
n+1 

- ui,j
n 
) 

vt=1/t(vi,j
n+1 

- vi,j
n 
) 

Substituting these approximations in to equations (16) and 

(17) gives the iterative solution to GVF. The value of u and v 

for each pixel is substituted in to equation (3) to get the energy 

value E in each iteration. The convergence of iteration can be 

reached when the energy value is hardly decreased. Each GVF 

vector will point towards object boundary even if it is far 

away from them. Models based on GVF field can approach 

object boundaries even if the initial contour is located far from 

them. However these models still require human interaction. 

We modify the existing external force field for use in an 

automatic seed selection and region growing process. 

IV. MODIFIED GVF FIELD 

      

     A Four component field [k(x,y), l(x,y), m(x,y), n(x,y)] 

is defined first where k, l, m, n represents the amplitudes (i.e., 

projections) in the x, y, x, y axes (as shown in figure 5) 

 
Fig. 5 Four-component vector definition for EGVF field model 

Here (x, y) and (x, y) form 2 separate Orthogonal 

co-ordinate Systems with a rotation of 45º. By Extending the 

GVF field, the force field can be given as 

V(x, y) = [V1(x, y), (V2(x, y))]  = [[k, l], [m, n]] (18) 

V1(x, y) = [k(x, y), l(x, y)] 

V2(x, y) = [m(x, y), n(x, y)] 

The equation 18 minimizes the energy function as, 

E = ∫∫ µ |V1|²+|f|²|V1-f|²dxdy + ∫∫ µ |V2|²+|g|²|V2-

   g|²dxdy (19) 

Where, f = (Ix, Iy), g = (Ix, Iy) are the gradients of Image I 

in (x, y) and (x, y) co-ordinate Systems. The force vector 
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field V(x, y) can be solved from the following Euler equations 

by applying calculus of variations to the energy function. 

µ²k-(k-Ix) |f|² = 0   (20)  

µ²l-(l-Iy) |f|² = 0   (21) 

µ²m-(m-Ix) |g|² = 0   (22) 

µ²n-(n-Iy) |g|² = 0   (23) 

where, ² represents the Laplacian Operator. We can 

iteratively solve these equations by considering the force 

vectors (k, l, m, n)‘s as function of time n. The time step is 

simply set to 1. 

Therefore we get the following iterative equations. 

kn+1 = kn+µ²kn-(kIx) |f|
2   

(24) 

ln+1 = ln+µ²ln-(l-Ix) |f|²   (25) 

mn+1 = mn+µ²mn-(m-Ix) |f|²  (26) 

nn+1 = nn+µ²nn-(n-Ix) |f|²   (27) 

The initial conditions are set to kο=Ix, lο = Iy,  mο=Ix, nο = Iy 

The values of k, l, m and n for each pixel (x, y) are substituted 

in to Equation (19) to get energy value ‗E‘ in each iteration.       

     The convergence of iterations can be reached when the 

energy value is hardly decreased. The motivation of the 

energy graph is to indicate the level of gradient diffusion. The 

number of iterations depends up on the image.  The overall 

process is given in the form of flowchart as in figure 5. 

     After calculating the force vector V(x, y)‘s, they are 

computed to obtain the signs only as stated by Cheng-Hung 

Chung[4]. 

𝑘  = k/|k| , 𝑙 =l/|l|,  𝑚  = m/|m| ,  𝑛 = n/|n| (28) 

     The sign value roughly indicates the direction of force on a 

specific axis and is zero when the force component has zero 

amplitude. The force will be in the opposite direction when 

the normalized amplitude in that axis is -1. Consequently, 

each pixel is considered to connect outwards to 4 of its 8-

neighborhood pixels by the strengths k, l, m, and n. 

A. SEED SELECTION PROCESS 

 To search the seeds, we score the status of force 

vectors from 8-neighborhoods for each pixel. Basically, the 

score counts the number of neighboring pixels whose force 

vectors do not point inwards to the considered pixel. For 

example Figure (6a) and Figure (6b) have scores 8 and 0, 

respectively. All pixels have seed selection scores ranging 

from 0 to 8. Since the force direction generally indicates the 

gradient directions onwards object boundary, pixels of higher 

scores will be chosen as the seeds. 

     

 Fig. 6(a). Pixel with 8 score           Fig. 6(b). Pixel with 0 score 

B. REGION GROWING PROCESS 

The seeds selected in the previous step are utilized to segment 

the image. The region growing approach is as follows,  

1) Calculate the gray level difference between the seed pixel  

    and the average of pixels surrounding the seed pixel. Let it  

    be . where,  = | seed value -  |, where  – average value  

    of the surrounding pixels. 

2)Start by choosing an arbitrary seed pixel and compare it  

    with neighbouring pixel. 

3)Region is grown from the seed pixel by adding in      

   neighbouring pixels whose value lies within the  value,  

   increasing the size of the region. 

 

  

Fig. 7 Start of growing a region 

4)When the growth of one region stops, we simply choose  

   another seed pixel that does not belong to any other region  

   and start again. 

5)This whole process is continued until all pixels belong to  

   some region. 

V. EXPERIMENTAL RESULTS 

we have presented a technique for segmentation and 

detection of pathological tissues (tumor) from magnetic 

resonance (MR) images of brain with the help of modified 

gradient vector flow field model and region growing. The 

proposed technique is designed for supporting the tumor 

detection in brain images with tumor and without tumor. The 

obtained experimental results shows that GVF model can also 
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be used in MRI brain image segmentation. The obtained 

experimental results are shown in figure 8. 

The proposed method is implemented in normal brain 

image and the corresponding skull stripped image and 

gradient in x and y-axis is shown in figure 8. 

 

  
 
          Fig 8(a) Input Image  Fig 8(b) Skull stripped 

 

   
 
            Fig 8 (c) Gradient in X-axis         Fig 8 (d) Gradient in Y-axis 

 

   
          Fig 9(a) Input Image  Fig 9(b) Skull stripped 

     The proposed method is implemented on abnormal brain 

image and the obtained results are given in figure 9. 
 

After several iterations, the grey level of the pixels are 

diffused for scoring to find the seeds. In the figure 10, we can 

see the arrows are facing outwards i.e., the force vector field is 

outwards. so, the force moves from the centre of the abnormal 

region towards the boundary. The image after region growing 

with the seed is shown in figure 12 a. finally the tumour 

segmented image is shown in figure 12 b. 

 

 
 
Fig. 11. Energy value curve 

 

   
 
Fig 12 (a) Image after region growing (b) Image after extracting tumour 

region 

 

         The area of an image is the total number of pixels 

present in the area which can be calculated in the length units 

by multiplying the number of pixels with the dimension of one 

pixel. In our proposed method, the size of the input image is 

192x4=198. Therefore, the horizontal resolution is 1/192 inch 

and the vertical resolution is 1/198 inch. The area of single 

pixel is equal to (1/192)*(1/198) square inch. 

 A=(1/192)*(1/198) 

Area of the tumor  = A * total number of pixels 

   = 2.63x10
-5

* 380 

   = 0.00999 sq. inch 
 

VI. CONCLUSION 

The results show that the proposed method can detect the 

presence of tumor in brain images with tumor and without 

tumor. The method is unsupervised and can automatically 

detect the tumor. The area of the tumor is also calculated for 

various brain images. 
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